3.1.22 \(\int \coth ^3(x) (a+b \coth ^2(x))^{3/2} \, dx\) [22]

Optimal. Leaf size=82 \[ (a+b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \coth ^2(x)}}{\sqrt {a+b}}\right )-(a+b) \sqrt {a+b \coth ^2(x)}-\frac {1}{3} \left (a+b \coth ^2(x)\right )^{3/2}-\frac {\left (a+b \coth ^2(x)\right )^{5/2}}{5 b} \]

[Out]

(a+b)^(3/2)*arctanh((a+b*coth(x)^2)^(1/2)/(a+b)^(1/2))-1/3*(a+b*coth(x)^2)^(3/2)-1/5*(a+b*coth(x)^2)^(5/2)/b-(
a+b)*(a+b*coth(x)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.353, Rules used = {3751, 457, 81, 52, 65, 214} \begin {gather*} -\frac {\left (a+b \coth ^2(x)\right )^{5/2}}{5 b}-\frac {1}{3} \left (a+b \coth ^2(x)\right )^{3/2}-(a+b) \sqrt {a+b \coth ^2(x)}+(a+b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \coth ^2(x)}}{\sqrt {a+b}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Coth[x]^3*(a + b*Coth[x]^2)^(3/2),x]

[Out]

(a + b)^(3/2)*ArcTanh[Sqrt[a + b*Coth[x]^2]/Sqrt[a + b]] - (a + b)*Sqrt[a + b*Coth[x]^2] - (a + b*Coth[x]^2)^(
3/2)/3 - (a + b*Coth[x]^2)^(5/2)/(5*b)

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 81

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(c + d*x)^
(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 3751

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff/f), Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2
 + ff^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps

\begin {align*} \int \coth ^3(x) \left (a+b \coth ^2(x)\right )^{3/2} \, dx &=\text {Subst}\left (\int \frac {x^3 \left (a+b x^2\right )^{3/2}}{1-x^2} \, dx,x,\coth (x)\right )\\ &=\frac {1}{2} \text {Subst}\left (\int \frac {x (a+b x)^{3/2}}{1-x} \, dx,x,\coth ^2(x)\right )\\ &=-\frac {\left (a+b \coth ^2(x)\right )^{5/2}}{5 b}+\frac {1}{2} \text {Subst}\left (\int \frac {(a+b x)^{3/2}}{1-x} \, dx,x,\coth ^2(x)\right )\\ &=-\frac {1}{3} \left (a+b \coth ^2(x)\right )^{3/2}-\frac {\left (a+b \coth ^2(x)\right )^{5/2}}{5 b}+\frac {1}{2} (a+b) \text {Subst}\left (\int \frac {\sqrt {a+b x}}{1-x} \, dx,x,\coth ^2(x)\right )\\ &=-(a+b) \sqrt {a+b \coth ^2(x)}-\frac {1}{3} \left (a+b \coth ^2(x)\right )^{3/2}-\frac {\left (a+b \coth ^2(x)\right )^{5/2}}{5 b}+\frac {1}{2} (a+b)^2 \text {Subst}\left (\int \frac {1}{(1-x) \sqrt {a+b x}} \, dx,x,\coth ^2(x)\right )\\ &=-(a+b) \sqrt {a+b \coth ^2(x)}-\frac {1}{3} \left (a+b \coth ^2(x)\right )^{3/2}-\frac {\left (a+b \coth ^2(x)\right )^{5/2}}{5 b}+\frac {(a+b)^2 \text {Subst}\left (\int \frac {1}{1+\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \coth ^2(x)}\right )}{b}\\ &=(a+b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \coth ^2(x)}}{\sqrt {a+b}}\right )-(a+b) \sqrt {a+b \coth ^2(x)}-\frac {1}{3} \left (a+b \coth ^2(x)\right )^{3/2}-\frac {\left (a+b \coth ^2(x)\right )^{5/2}}{5 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.31, size = 86, normalized size = 1.05 \begin {gather*} (a+b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \coth ^2(x)}}{\sqrt {a+b}}\right )-\frac {\sqrt {a+b \coth ^2(x)} \left (3 a^2+20 a b+15 b^2+b (6 a+5 b) \coth ^2(x)+3 b^2 \coth ^4(x)\right )}{15 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Coth[x]^3*(a + b*Coth[x]^2)^(3/2),x]

[Out]

(a + b)^(3/2)*ArcTanh[Sqrt[a + b*Coth[x]^2]/Sqrt[a + b]] - (Sqrt[a + b*Coth[x]^2]*(3*a^2 + 20*a*b + 15*b^2 + b
*(6*a + 5*b)*Coth[x]^2 + 3*b^2*Coth[x]^4))/(15*b)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(487\) vs. \(2(66)=132\).
time = 0.62, size = 488, normalized size = 5.95

method result size
derivativedivides \(-\frac {\left (a +b \left (\coth ^{2}\left (x \right )\right )\right )^{\frac {5}{2}}}{5 b}-\frac {\left (b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b \right )^{\frac {3}{2}}}{6}-\frac {b \left (\frac {\left (2 b \left (\coth \left (x \right )-1\right )+2 b \right ) \sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}}{4 b}+\frac {\left (4 b \left (a +b \right )-4 b^{2}\right ) \ln \left (\frac {b \left (\coth \left (x \right )-1\right )+b}{\sqrt {b}}+\sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}\right )}{8 b^{\frac {3}{2}}}\right )}{2}-\frac {\left (a +b \right ) \left (\sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}+\sqrt {b}\, \ln \left (\frac {b \left (\coth \left (x \right )-1\right )+b}{\sqrt {b}}+\sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}\right )-\sqrt {a +b}\, \ln \left (\frac {2 a +2 b +2 b \left (\coth \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}}{\coth \left (x \right )-1}\right )\right )}{2}-\frac {\left (b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b \right )^{\frac {3}{2}}}{6}+\frac {b \left (\frac {\left (2 b \left (1+\coth \left (x \right )\right )-2 b \right ) \sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}}{4 b}+\frac {\left (4 b \left (a +b \right )-4 b^{2}\right ) \ln \left (\frac {b \left (1+\coth \left (x \right )\right )-b}{\sqrt {b}}+\sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}\right )}{8 b^{\frac {3}{2}}}\right )}{2}-\frac {\left (a +b \right ) \left (\sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}-\sqrt {b}\, \ln \left (\frac {b \left (1+\coth \left (x \right )\right )-b}{\sqrt {b}}+\sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}\right )-\sqrt {a +b}\, \ln \left (\frac {2 a +2 b -2 b \left (1+\coth \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}}{1+\coth \left (x \right )}\right )\right )}{2}\) \(488\)
default \(-\frac {\left (a +b \left (\coth ^{2}\left (x \right )\right )\right )^{\frac {5}{2}}}{5 b}-\frac {\left (b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b \right )^{\frac {3}{2}}}{6}-\frac {b \left (\frac {\left (2 b \left (\coth \left (x \right )-1\right )+2 b \right ) \sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}}{4 b}+\frac {\left (4 b \left (a +b \right )-4 b^{2}\right ) \ln \left (\frac {b \left (\coth \left (x \right )-1\right )+b}{\sqrt {b}}+\sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}\right )}{8 b^{\frac {3}{2}}}\right )}{2}-\frac {\left (a +b \right ) \left (\sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}+\sqrt {b}\, \ln \left (\frac {b \left (\coth \left (x \right )-1\right )+b}{\sqrt {b}}+\sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}\right )-\sqrt {a +b}\, \ln \left (\frac {2 a +2 b +2 b \left (\coth \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}}{\coth \left (x \right )-1}\right )\right )}{2}-\frac {\left (b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b \right )^{\frac {3}{2}}}{6}+\frac {b \left (\frac {\left (2 b \left (1+\coth \left (x \right )\right )-2 b \right ) \sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}}{4 b}+\frac {\left (4 b \left (a +b \right )-4 b^{2}\right ) \ln \left (\frac {b \left (1+\coth \left (x \right )\right )-b}{\sqrt {b}}+\sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}\right )}{8 b^{\frac {3}{2}}}\right )}{2}-\frac {\left (a +b \right ) \left (\sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}-\sqrt {b}\, \ln \left (\frac {b \left (1+\coth \left (x \right )\right )-b}{\sqrt {b}}+\sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}\right )-\sqrt {a +b}\, \ln \left (\frac {2 a +2 b -2 b \left (1+\coth \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}}{1+\coth \left (x \right )}\right )\right )}{2}\) \(488\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(x)^3*(a+b*coth(x)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/5*(a+b*coth(x)^2)^(5/2)/b-1/6*(b*(coth(x)-1)^2+2*b*(coth(x)-1)+a+b)^(3/2)-1/2*b*(1/4*(2*b*(coth(x)-1)+2*b)/
b*(b*(coth(x)-1)^2+2*b*(coth(x)-1)+a+b)^(1/2)+1/8*(4*b*(a+b)-4*b^2)/b^(3/2)*ln((b*(coth(x)-1)+b)/b^(1/2)+(b*(c
oth(x)-1)^2+2*b*(coth(x)-1)+a+b)^(1/2)))-1/2*(a+b)*((b*(coth(x)-1)^2+2*b*(coth(x)-1)+a+b)^(1/2)+b^(1/2)*ln((b*
(coth(x)-1)+b)/b^(1/2)+(b*(coth(x)-1)^2+2*b*(coth(x)-1)+a+b)^(1/2))-(a+b)^(1/2)*ln((2*a+2*b+2*b*(coth(x)-1)+2*
(a+b)^(1/2)*(b*(coth(x)-1)^2+2*b*(coth(x)-1)+a+b)^(1/2))/(coth(x)-1)))-1/6*(b*(1+coth(x))^2-2*b*(1+coth(x))+a+
b)^(3/2)+1/2*b*(1/4*(2*b*(1+coth(x))-2*b)/b*(b*(1+coth(x))^2-2*b*(1+coth(x))+a+b)^(1/2)+1/8*(4*b*(a+b)-4*b^2)/
b^(3/2)*ln((b*(1+coth(x))-b)/b^(1/2)+(b*(1+coth(x))^2-2*b*(1+coth(x))+a+b)^(1/2)))-1/2*(a+b)*((b*(1+coth(x))^2
-2*b*(1+coth(x))+a+b)^(1/2)-b^(1/2)*ln((b*(1+coth(x))-b)/b^(1/2)+(b*(1+coth(x))^2-2*b*(1+coth(x))+a+b)^(1/2))-
(a+b)^(1/2)*ln((2*a+2*b-2*b*(1+coth(x))+2*(a+b)^(1/2)*(b*(1+coth(x))^2-2*b*(1+coth(x))+a+b)^(1/2))/(1+coth(x))
))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)^3*(a+b*coth(x)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*coth(x)^2 + a)^(3/2)*coth(x)^3, x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 2154 vs. \(2 (66) = 132\).
time = 0.60, size = 4940, normalized size = 60.24 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)^3*(a+b*coth(x)^2)^(3/2),x, algorithm="fricas")

[Out]

[1/60*(15*((a*b + b^2)*cosh(x)^10 + 10*(a*b + b^2)*cosh(x)*sinh(x)^9 + (a*b + b^2)*sinh(x)^10 - 5*(a*b + b^2)*
cosh(x)^8 + 5*(9*(a*b + b^2)*cosh(x)^2 - a*b - b^2)*sinh(x)^8 + 40*(3*(a*b + b^2)*cosh(x)^3 - (a*b + b^2)*cosh
(x))*sinh(x)^7 + 10*(a*b + b^2)*cosh(x)^6 + 10*(21*(a*b + b^2)*cosh(x)^4 - 14*(a*b + b^2)*cosh(x)^2 + a*b + b^
2)*sinh(x)^6 + 4*(63*(a*b + b^2)*cosh(x)^5 - 70*(a*b + b^2)*cosh(x)^3 + 15*(a*b + b^2)*cosh(x))*sinh(x)^5 - 10
*(a*b + b^2)*cosh(x)^4 + 10*(21*(a*b + b^2)*cosh(x)^6 - 35*(a*b + b^2)*cosh(x)^4 + 15*(a*b + b^2)*cosh(x)^2 -
a*b - b^2)*sinh(x)^4 + 40*(3*(a*b + b^2)*cosh(x)^7 - 7*(a*b + b^2)*cosh(x)^5 + 5*(a*b + b^2)*cosh(x)^3 - (a*b
+ b^2)*cosh(x))*sinh(x)^3 + 5*(a*b + b^2)*cosh(x)^2 + 5*(9*(a*b + b^2)*cosh(x)^8 - 28*(a*b + b^2)*cosh(x)^6 +
30*(a*b + b^2)*cosh(x)^4 - 12*(a*b + b^2)*cosh(x)^2 + a*b + b^2)*sinh(x)^2 - a*b - b^2 + 10*((a*b + b^2)*cosh(
x)^9 - 4*(a*b + b^2)*cosh(x)^7 + 6*(a*b + b^2)*cosh(x)^5 - 4*(a*b + b^2)*cosh(x)^3 + (a*b + b^2)*cosh(x))*sinh
(x))*sqrt(a + b)*log(-((a^3 + a^2*b)*cosh(x)^8 + 8*(a^3 + a^2*b)*cosh(x)*sinh(x)^7 + (a^3 + a^2*b)*sinh(x)^8 -
 2*(2*a^3 + a^2*b)*cosh(x)^6 - 2*(2*a^3 + a^2*b - 14*(a^3 + a^2*b)*cosh(x)^2)*sinh(x)^6 + 4*(14*(a^3 + a^2*b)*
cosh(x)^3 - 3*(2*a^3 + a^2*b)*cosh(x))*sinh(x)^5 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^4 + (70*(a^3 + a^2*
b)*cosh(x)^4 + 6*a^3 + 4*a^2*b - a*b^2 + b^3 - 30*(2*a^3 + a^2*b)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a^3 + a^2*b)*c
osh(x)^5 - 10*(2*a^3 + a^2*b)*cosh(x)^3 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x))*sinh(x)^3 + a^3 + 3*a^2*b +
 3*a*b^2 + b^3 - 2*(2*a^3 + 3*a^2*b - b^3)*cosh(x)^2 + 2*(14*(a^3 + a^2*b)*cosh(x)^6 - 15*(2*a^3 + a^2*b)*cosh
(x)^4 - 2*a^3 - 3*a^2*b + b^3 + 3*(6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*(a^2*cosh(x)^
6 + 6*a^2*cosh(x)*sinh(x)^5 + a^2*sinh(x)^6 - 3*a^2*cosh(x)^4 + 3*(5*a^2*cosh(x)^2 - a^2)*sinh(x)^4 + 4*(5*a^2
*cosh(x)^3 - 3*a^2*cosh(x))*sinh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x)^2 + (15*a^2*cosh(x)^4 - 18*a^2*cosh(x)^2
 + 3*a^2 + 2*a*b - b^2)*sinh(x)^2 - a^2 - 2*a*b - b^2 + 2*(3*a^2*cosh(x)^5 - 6*a^2*cosh(x)^3 + (3*a^2 + 2*a*b
- b^2)*cosh(x))*sinh(x))*sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 - a + b)/(cosh(x)^2 - 2*cosh(
x)*sinh(x) + sinh(x)^2)) + 4*(2*(a^3 + a^2*b)*cosh(x)^7 - 3*(2*a^3 + a^2*b)*cosh(x)^5 + (6*a^3 + 4*a^2*b - a*b
^2 + b^3)*cosh(x)^3 - (2*a^3 + 3*a^2*b - b^3)*cosh(x))*sinh(x))/(cosh(x)^6 + 6*cosh(x)^5*sinh(x) + 15*cosh(x)^
4*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(x)^2*sinh(x)^4 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6)) + 15*((a*b +
 b^2)*cosh(x)^10 + 10*(a*b + b^2)*cosh(x)*sinh(x)^9 + (a*b + b^2)*sinh(x)^10 - 5*(a*b + b^2)*cosh(x)^8 + 5*(9*
(a*b + b^2)*cosh(x)^2 - a*b - b^2)*sinh(x)^8 + 40*(3*(a*b + b^2)*cosh(x)^3 - (a*b + b^2)*cosh(x))*sinh(x)^7 +
10*(a*b + b^2)*cosh(x)^6 + 10*(21*(a*b + b^2)*cosh(x)^4 - 14*(a*b + b^2)*cosh(x)^2 + a*b + b^2)*sinh(x)^6 + 4*
(63*(a*b + b^2)*cosh(x)^5 - 70*(a*b + b^2)*cosh(x)^3 + 15*(a*b + b^2)*cosh(x))*sinh(x)^5 - 10*(a*b + b^2)*cosh
(x)^4 + 10*(21*(a*b + b^2)*cosh(x)^6 - 35*(a*b + b^2)*cosh(x)^4 + 15*(a*b + b^2)*cosh(x)^2 - a*b - b^2)*sinh(x
)^4 + 40*(3*(a*b + b^2)*cosh(x)^7 - 7*(a*b + b^2)*cosh(x)^5 + 5*(a*b + b^2)*cosh(x)^3 - (a*b + b^2)*cosh(x))*s
inh(x)^3 + 5*(a*b + b^2)*cosh(x)^2 + 5*(9*(a*b + b^2)*cosh(x)^8 - 28*(a*b + b^2)*cosh(x)^6 + 30*(a*b + b^2)*co
sh(x)^4 - 12*(a*b + b^2)*cosh(x)^2 + a*b + b^2)*sinh(x)^2 - a*b - b^2 + 10*((a*b + b^2)*cosh(x)^9 - 4*(a*b + b
^2)*cosh(x)^7 + 6*(a*b + b^2)*cosh(x)^5 - 4*(a*b + b^2)*cosh(x)^3 + (a*b + b^2)*cosh(x))*sinh(x))*sqrt(a + b)*
log(((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 + 2*b*cosh(x)^2 + 2*(3*(a + b)*cosh(x
)^2 + b)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 + 1)*sqrt(a + b)*sqrt(((a + b)*cosh(x)
^2 + (a + b)*sinh(x)^2 - a + b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*((a + b)*cosh(x)^3 + b*cosh(x
))*sinh(x) + a + b)/(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2)) - 4*sqrt(2)*((3*a^2 + 26*a*b + 23*b^2)*cosh(x
)^8 + 8*(3*a^2 + 26*a*b + 23*b^2)*cosh(x)*sinh(x)^7 + (3*a^2 + 26*a*b + 23*b^2)*sinh(x)^8 - 4*(3*a^2 + 20*a*b
+ 12*b^2)*cosh(x)^6 + 4*(7*(3*a^2 + 26*a*b + 23*b^2)*cosh(x)^2 - 3*a^2 - 20*a*b - 12*b^2)*sinh(x)^6 + 8*(7*(3*
a^2 + 26*a*b + 23*b^2)*cosh(x)^3 - 3*(3*a^2 + 20*a*b + 12*b^2)*cosh(x))*sinh(x)^5 + 2*(9*a^2 + 54*a*b + 49*b^2
)*cosh(x)^4 + 2*(35*(3*a^2 + 26*a*b + 23*b^2)*cosh(x)^4 - 30*(3*a^2 + 20*a*b + 12*b^2)*cosh(x)^2 + 9*a^2 + 54*
a*b + 49*b^2)*sinh(x)^4 + 8*(7*(3*a^2 + 26*a*b + 23*b^2)*cosh(x)^5 - 10*(3*a^2 + 20*a*b + 12*b^2)*cosh(x)^3 +
(9*a^2 + 54*a*b + 49*b^2)*cosh(x))*sinh(x)^3 - 4*(3*a^2 + 20*a*b + 12*b^2)*cosh(x)^2 + 4*(7*(3*a^2 + 26*a*b +
23*b^2)*cosh(x)^6 - 15*(3*a^2 + 20*a*b + 12*b^2)*cosh(x)^4 + 3*(9*a^2 + 54*a*b + 49*b^2)*cosh(x)^2 - 3*a^2 - 2
0*a*b - 12*b^2)*sinh(x)^2 + 3*a^2 + 26*a*b + 23*b^2 + 8*((3*a^2 + 26*a*b + 23*b^2)*cosh(x)^7 - 3*(3*a^2 + 20*a
*b + 12*b^2)*cosh(x)^5 + (9*a^2 + 54*a*b + 49*b^2)*cosh(x)^3 - (3*a^2 + 20*a*b + 12*b^2)*cosh(x))*sinh(x))*sqr
t(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 - a + ...

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (a + b \coth ^{2}{\left (x \right )}\right )^{\frac {3}{2}} \coth ^{3}{\left (x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)**3*(a+b*coth(x)**2)**(3/2),x)

[Out]

Integral((a + b*coth(x)**2)**(3/2)*coth(x)**3, x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)^3*(a+b*coth(x)^2)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(ex

________________________________________________________________________________________

Mupad [B]
time = 9.04, size = 112, normalized size = 1.37 \begin {gather*} -\frac {{\left (b\,{\mathrm {coth}\left (x\right )}^2+a\right )}^{5/2}}{5\,b}-\left (\frac {a+b}{3\,b}-\frac {a}{3\,b}\right )\,{\left (b\,{\mathrm {coth}\left (x\right )}^2+a\right )}^{3/2}-\left (a+b\right )\,\left (\frac {a+b}{b}-\frac {a}{b}\right )\,\sqrt {b\,{\mathrm {coth}\left (x\right )}^2+a}-\mathrm {atan}\left (\frac {{\left (a+b\right )}^{3/2}\,\sqrt {b\,{\mathrm {coth}\left (x\right )}^2+a}\,1{}\mathrm {i}}{a^2+2\,a\,b+b^2}\right )\,{\left (a+b\right )}^{3/2}\,1{}\mathrm {i} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(x)^3*(a + b*coth(x)^2)^(3/2),x)

[Out]

- (a + b*coth(x)^2)^(5/2)/(5*b) - ((a + b)/(3*b) - a/(3*b))*(a + b*coth(x)^2)^(3/2) - atan(((a + b)^(3/2)*(a +
 b*coth(x)^2)^(1/2)*1i)/(2*a*b + a^2 + b^2))*(a + b)^(3/2)*1i - (a + b)*((a + b)/b - a/b)*(a + b*coth(x)^2)^(1
/2)

________________________________________________________________________________________